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Abstract
The influence of a fast system on the hamiltonian dynamics of a slow system
coupled to it is explored by calculating, in a model, high-order smooth
(nonoscillating) adiabatic reaction forces (i.e. beyond Born–Oppenheimer and
geometric magnetism). The model is a spin (fast) driven by, and reacting on,
the position vector (slow) of a particle coupled to it. The search for smooth
solutions is equivalent to determining the slow manifold in the full phase
space, on which, in the model system, the spin would not precess. The series of
reactions for the nonlinear coupled system diverges factorially, as in the simpler
linear case of a spin being driven passively by a position vector changing in
a prescribed manner. When the particle is closest to the origin, all terms in
the divergent series have the same sign, indicating a Stokes phenomenon and
suggesting that a solution of the slow manifold equation exists but contains
exponentially weak precession oscillations. The predicted oscillations are
observed numerically, and shown to be inevitable for the exactly solvable
linearized slow manifold which is equivalent to the Landau–Majorana–Zener
model of quantum mechanics.

PACS numbers: 03.65.Vf, 02.30.Mv, 02.40.Yy, 45.50.Dd

1. Introduction

For classical or quantum systems consisting of interacting components with very different
time scales, it is natural to seek an adiabatic description, in which the fast and slow dynamics
are separated [1]. Examples are the Born–Oppenheimer separation of electronic (fast) and
nuclear (slow) motion in the quantum physics of molecules [2, 3], and the determination of slow
manifolds in classical dynamics [4, 5]. In leading order (Born–Oppenheimer approximation),
the slow variables are regarded as frozen parameters affecting the fast variables, whose average
motion in turn affects the slow dynamics. To the next order, the slow velocity provides a
correction to the fast dynamics, in the form of the geometric phase (quantum [6, 7]) or the
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Hannay angle (classical [8]); the reaction of these geometric phenomena on the slow dynamics
takes the form of a ‘geometric magnetic’ force [9, 10].

Higher-order corrections to the fast dynamics imply higher-order reactions on the slow
dynamics. Our purpose here is to investigate these higher-order reaction forces in the
simplest case, where the dynamics is classical, hamiltonian and nonresonant. Previous studies
have identified several forces beyond geometric magnetism: an ‘electric’ force [9, 11], the
Littlejohn–Weigert (LJ) force [12] and, in chaotic fast systems, deterministic friction [13, 14]
and the Jarzynski force [14]. Studies of high orders of an expansion in the slowness parameter
have been envisaged [4, 15], and different resummation schemes have been compared [16] but
not carried out in explicit detail. The general case seems complicated, but by making several
simplifications we are able to study high-order post-geometric reactions and make progress in
understanding their asymptotics.

The study of adiabatic reaction forces in the coupled problem is more difficult than
determining the fast motion when slaved to (i.e. driven by) slow variables with prescribed
time-dependence. In the slaved problem, the high-order fast motion depends on high time
derivatives of the slow variables. When inserted naively into formulas for the reaction forces
on the slow system, this would give slow accelerations depending on time derivatives higher
than the second, and hence, in the coupled problem, slow equations of motion with many
redundant solutions. To avoid this, and determine high-order reaction forces correctly, it is
necessary to employ a self-consistent procedure.

The central simplification is to consider not the most general motion, which would involve
averaging over the fast oscillations [17] that are weakly inherited by the slow motion. Instead,
we restrict attention to certain special motions, in which the fast oscillations are suppressed by
studying perturbations of an equilibrium configuration for fixed slow variables, and seek fast
solutions clinging as closely as possible to the slow variables when these are freed to change.
In dynamical systems terminology, this is the slow manifold, to which motion in the full
slow-fast phase space is restricted by choosing the special fast motions. (There are analogues
of the slow manifolds, associated with periodic orbits rather than equilibrium configurations
[4], but, consistent with our decision to study only the simplest situation, we do not consider
these further.)

To proceed further, a model system is introduced (section 2), consisting of a heavy
spinning particle moving in three dimensions, with the spin precessing rapidly about the
particle’s position vector, to which it is strongly coupled and upon which it reacts. The fast
system is the spin, and the position and conjugate momentum of the particle constitute the
slow system. Previously [10], it was shown for this model that the geometric magnetic
and electric reaction forces describe qualitatively distinct features of the exact motion.
Appendix A describes a slight generalization of the spin model, in which the fast motion
is an arbitrary hamiltonian system rather than a spin; an instructive calculation demonstrates
the geometric magnetic correction to the Born–Oppenheimer force. Further generalizations
have been studied, in quantum as well as classical mechanics, in which the fast dynamics is
coupled to the slow momenta as well as the position [18–21], but the position-dependent spin
model is sufficient for our study of high-order reactions. A technical aspect of the spin model
is elaborated in appendix B.

An exact nonlinear self-consistent formalism for the slow manifold is developed in
section 3, leading to an equation that in principle would determine it. The slow manifold
equation is used to generate recurrence relations for the adiabatic series of reaction forces,
and the first four are determined explicitly. The first three illustrate previously derived general
forces: the Born–Oppenheimer, geometric magnetic [10] and Littlejohn–Weigert ([12] and
appendix C) forces. The fourth is new.
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Section 4 is devoted to the regime in which the slow manifold equation can be
approximated by its linearization. The first three corresponding adiabatic reaction forces
agree with those in the nonlinear theory, but the fourth and higher are different. The
linearized equation is solved exactly, using its equivalence to the Landau–Majorana–Zener
[22–24] model familiar in the quantum mechanics of a slaved spin. The resulting exact linear
slow manifold possesses exponentially weak oscillations in addition to the smooth adiabatic
reactions. The oscillations are associated with the Stokes phenomenon of asymptotics, and
reflect the divergence of the series of reactions, associated with nonadiabatic effects when the
particle is closest to the origin.

Section 5 is numerical. Trajectory computations for the full coupled dynamics show how
the precession gets increasingly suppressed as more reaction forces are included and the spin
clings more closely to the slow manifold. But the linear theory strongly suggests that weak
oscillations are inevitable in the nonlinear manifold too, and will appear when the particle’s
distance from the origin is a minimum; this too is demonstrated numerically.

Section 6 is an exploration of the high orders of the series of reaction forces, as functions
on the slow phase space. A combined analytical and numerical approach indicates that, as in
the linear theory, the series diverges factorially in the manner familiar in asymptotics. The
situation corresponding to the Stokes phenomenon, indicating the birth of exponentially weak
oscillations, is where the divergent terms all have the same sign. We show that this corresponds
to orthogonality of the particle’s position and velocity vectors and the distance from the origin
being a minimum.

This study suggests the conclusion (section 7) that a slow manifold exists, in the sense
of an exact solution of the slow manifold equation of section 3. But although this represents
solutions in which the spin and the particle are forever locked together, the fast oscillations
have not been completely suppressed: they persist, albeit exponentially weakly. Therefore
‘slow manifold’ might not be the best terminology; but it is well established, so we continue
to use it (‘Slaved manifold’ might be more accurate).

While writing this paper, we learned of a recent work by Vanneste [25], concerning a
different system but taking a similar approach to the study of the slow manifold via the high
orders of the adiabatic expansion.

2. Spin model

The position R = {X, Y, Z} of a heavy particle with momentum P = {PX, PY, PZ} is strongly
coupled to its classical spin S, according to the hamiltonian [10, 12, 26]

H = 1

2
εP · P +

1

ε
R · S, (2.1)

in which ε is the small slowness parameter. Thus R acts as a ‘magnetic field’, dipole-coupled
to S. Fancifully, this could represent a large homogeneous sphere of ‘monopolium’, inside
which the spinning particle is moving without resistance; alternatively, it could represent a
thin spinning molecule with an axial electric dipole moment, moving through a uniformly
charged sphere. The slow dynamics is determined by

Ṙ ≡ V = ∇P H = εP , Ṗ = V̇

ε
= −∇RH = −1

ε
S, (2.2)

so the force on the particle is

F = R̈ = V̇ = −S. (2.3)

For the fast dynamics, we use the fact that the spin can be regarded as a hamiltonian
system with one degree of freedom, where the two-dimensional phase space is a sphere whose

3



J. Phys. A: Math. Theor. 43 (2010) 045102 M V Berry and P Shukla

R=0

R(t)R

S

S(t)
θ

Figure 1. Spin S precessing about the instantaneous position vector R.

azimuth angle about any axis is the coordinate q and where the component of spin along that
axis is the conjugate momentum p. The resulting Hamilton equations give

Ṡ = 1

ε
R × S, (2.4)

describing precession of S about the instantaneous position R, with angular velocity R/ε

(figure 1). If the position R(t) were a prescribed function of time, rather than being determined
dynamically by (2.3), the precession equation (2.4) would determine the dynamics of the slaved
spin.

This spin equation automatically preserves the magnitude |S| of the spin. In addition,
rotational invariance leads to the conservation of the total angular momentum (orbital + spin),
that is

J = 1

ε
R × V + S = constant, (2.5)

and it is easily confirmed that this follows from the equations of motion (2.3) and (2.4). Of
course the total energy E = H is conserved too.

We note immediately that conservation of J enables S to be eliminated, giving an equation
for the slow dynamics alone: from (2.3),

F = V̇ = 1

ε
R × V − J = R × P − J . (2.6)

This reduced dynamics, of the slow system with three freedoms, corresponds to a particle
moving in a uniform ‘gravitational’ field −J and, again, the magnetic field −R of a sphere of
monopolium. This magnetic field is not divergenceless, so there is no corresponding vector
potential and it might seem that the slow dynamics (2.6) is not hamiltonian. However, an
argument of Littlejohn and Weigert [12] (a special case of dynamical reduction [27]) shows
that the three-freedom dynamics incorporating J = constant can be written in hamiltonian
form for a system with two freedoms. Athough we will not make use of this fact, a slightly
more explicit version of their argument is given in appendix B for completeness.

Equation (2.6) will be used in numerical computations of the slow dynamics, with J fixed
by the initial conditions for R, V , and S. But it does not generate the clinging solutions we
are seeking, which correspond to particular initial conditions depending on J. Therefore the
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slow manifold does not correspond to a single value of J; different trajectories on the slow
manifold corrrespond to different J. We specify the slow manifold in the next section.

We note that the parameter ε, and the magnitude |S| of the spin, can be eliminated from
the equations of motion (2.3) and (2.4) by the scalings

R → ε2/3|S|1/3R, t → ε1/3|S|−1/3t. (2.7)

Therefore small values of the slowness parameter ε correspond to the particle far from the
origin (large R) and long times. The corresponding speed scaling is

V = |V | ∼ ε1/3 ∼ R1/2. (2.8)

Nevertheless, in subsequent analysis it will be convenient to retain ε and |S|; in numerical
computations we will always choose |S| = 1.

3. Slow manifold: where S clings to R

As in the previous section, the spin dynamics determined by (2.4) is non-precessing in lowest
order if the spin is parallel or antiparallel to R. For the coupled dynamics we are considering,
it is necessary to distinguish the two cases: there are two slow manifolds. The following
notation is convenient:

S = ± |S| . (3.1)

Thus the lowest-order spin is

S0(R) = SeR. (3.2)

This is the lowest-order slow manifold, corresponding to the Born–Oppenheimer reaction force
−S0(R) on the slow particle according to (2.3). Thus the positive sign in (3.1) corresponds
to a force attracting the particle to the origin, and the minus sign represents repulsion.

Beyond the lowest order, the clinging spin will depend on the particle velocity as well as
its position. Thus we seek the slow manifold in the form S(R, V ). To find the equation this
must satisfy, we note that the slow manifold is a particular invariant manifold, and differentiate
with respect to time, using (2.3):

Ṡ = Ṙ ·∇RS + V̇ · ∇V S = V ·∇RS − S · ∇V S. (3.3)

Incorporating (2.4) gives the equation satisfied by S(R, V ):

V ·∇RS − S ·∇V S = 1

ε
R × S. (3.4)

This nonlinear partial differential equation is satisfied by any invariant manifold. For
example, motivated by (2.5) we find that

S(R,V ) = −1

ε
R × V + J (3.5)

is a solution for any constant vector J. But these do not include the manifold we seek, because,
although J is conserved exactly along any trajectory, the slow manifold intersects (is foliated
by) the solutions (3.5) for different J.

To specify the slow manifold, we demand that S reduces to the Born–Oppenheimer force
(3.2) when ε → 0 for fixed R and V (excluding R = 0), or equivalently, as R → ∞ for fixed
ε. But this is not quite enough, as experience with the linearized slow manifold (see section 4)
indicates. An additional boundary condition is a consequence of the fact that the dynamical
equations (2.2)–(2.4) guarantee that if the S, V and R are initially parallel they will remain
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so: the particle will move with constant acceleration on a line through the origin. Therefore
we seek the solutions satisfying the boundary condition

S((R · eV ) eV ,V ) = SeV . (3.6)

Note that this differs from the superficially similar lowest-order adiabatic spin (3.2) in a crucial
respect, that will have important implications later: in (3.2) the spin always points towards or
away from the origin, and so reverses on a path through the origin, whereas (3.6) requires the
spin to remain constant through the origin.

The solution S(t) of (3.4) and (3.6), with (3.2) as its large R asymptotics, is the slow
manifold. We will also refer to it as the spin field in the slow phase space, or as the reaction
force on the slow system (because of (2.3)).

To find a solution as an adiabatic series, we write

S(R,V ) =
∞∑

n=0

εnSn(R,V ), (3.7)

in which S0 is independent of V and given by (3.2). Truncating the series at the term n = N
defines the Nth order slow manifold. Identifying powers of ε leads to

eR × S0 = 0, eR × Sn+1 = 1

R

(
V · ∇RSn −

n∑
l=0

Sn−l ·∇V Sl

)
. (3.8)

This determines the components of S perpendicular to R, which we separate by defining

Sn = Sn‖eR + Sn⊥, i.e. Sn‖ = Sn ·eR. (3.9)

Thus, from (3.8), after separating the l = n term on the r.h.s using (3.2),

Sn+1⊥ = 1

R
eR ×

(
−V ·∇RSn + SeR ·∇V Sn +

n−1∑
l=1

Sn−l · ∇V Sl

)
. (3.10)

For the parallel components, we use

S2 = S ·S =
(

SeR +
∞∑

n=1

Snε
n

)
·
(

SeR +
∞∑

n=1

Snε
n

)

= S2 + 2S

∞∑
n=1

eR · Snε
n +

∞∑
n=2

εn

n−1∑
l=1

Sn−l ·Sl , (3.11)

whence

Sn‖ = − 1

2S

n−1∑
l=1

Sn−l · Sl . (3.12)

From this iteration scheme, we find the first four contributions to the slow manifold:

S0 = SeR, S1 = S

R2
(V × eR) , S2 = S

R4

(
−1

2
V 2

⊥eR + 3V‖V ⊥

)

S3 =
(

S

2R6

(
30V 2

‖ − 5V 2
⊥
)

+ 2
S2

R5

)
eR × V .

(3.13)

Here the velocity has been separated into components along and perpendicular to R, i.e.
V = V‖eR + V ⊥. The velocity-dependent force −εS1 is geometric magnetism: a force of
Lorentz type, generated by the magnetic field of a monopole with strength −S, which is the
known form of the geometric magnetic field (2.19) for spin [9, 10]. As shown in appendix C,
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−ε2S2 is the force identified by Littlejohn and Weigert [12]. Note that −ε3S3 is the first
reaction force containing terms involving both S and S2, because this is the first force influenced
by the nonlinearity of (3.4). The electric reaction force [9] does not appear in the series, because
it is proportional to the lowest-order spin component perpendicular to R, which vanishes for
the slow-manifold motions we are studying.

4. Linearized slow manifold

For large V, it is reasonable to regard the second term on the l.h.s. of (3.4) as small in
comparison with the first, and study the linearized spin field equation

V · ∇RS = 1

ε
R × S. (4.1)

A reason for studying this linearization is that it can be solved exactly and the corresponding
slow manifold studied in detail. Since V appears simply as a parameter (there is no derivative
involving V as in the full equation (3.4)), we can choose this vector to lie in any direction,
e.g. along eZ. Thus

V ∂ZS = 1

ε
R × S, (4.2)

This preserves normalization, so we can choose the convention

S · S = 1. (4.3)

The boundary condition (3.6) becomes

S(ZeZ, V eZ) = SeZ, (4.4)

where S = ±1. Since the only variable is Z, we can regard X and Y as parameters, and without
loss of generality exploit overall rotation symmetry and set Y = 0. Thus

R = XeX + ZeZ (4.5)

and (4.2) becomes

V ∂ZSX = −ZSY

ε

V ∂ZSY = (ZSX − XSZ)

ε

V ∂ZSZ = XSY

ε
.

(4.6)

The boundary condition (4.4) now corresponds to setting X = 0, and it is easy to see that (4.4)
is a solution.

Before solving these linearized equations exactly, we need to establish compatibility with
the adiabatic reactions (3.13) associated with the exact nonlinear dynamics. As in the nonlinear
case, we separate parallel and perpendicular components (cf 3.9), and use (4.2) and the fact
that S · S = 1. This gives the recurrences

Sn‖ = −1

2

n−1∑
m=1

Sn−m · Sm, Sn+1⊥ = −V

R
eR × ∂ZSn, (4.7)

starting from

S0 = eR = XeX + ZeZ

R
= XeX + ZeZ√

X2 + Z2
. (4.8)
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Iteration leads to

S0 = eR, S1 = V X

R3
eY , S2 = V 2X

R7

[
−
(

1

2
X2 + 3Z2

)
eX +

5

2
XZeZ

]
,

S3 = V 3X

2R11
(5X4 − 25XZ3 − 30X4)eY .

(4.10)

To compare these with the first four nonlinear spin fields (3.13), we use

V = V eZ, V‖ = V · eR = V Z

R
, V ⊥ = V − V‖eR = V

R2
(−XZeX + X2eZ),

(4.11)

and substitute into (3.13). This shows, after a little calculation, that the reaction forces S0,
S1, and S2 (Born–Oppenheimer, geometric magnetism and Littlejohn–Weigert) are perfectly
reproduced by the linearization. In S3 the only difference is that the term 2S2/R5 in (3.13) is
missing in (4.10). This is not surprising, because this is the first term that is not of order Vn;
in fact it is of order V rather than V3: it is the first term that reflects the nonlinearity. More
generally, linearization will reproduce the terms of order Vn in all the forces Sn.

To get an exact solution of the linearized equations, we transform the classical (4.6) to a
form reminiscent of quantum mechanics, using

S = 〈ψ |σ|ψ〉 = {2 Re u ∗ v, 2 Im u ∗ v, |u|2 − |v|2}, (4.12)

in which σ is the vector of Pauli matrices, namely

σ = {σ1, σ2, σ3} =
{(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
, (4.13)

and the 2-spinor

|ψ〉 =
(

u

v

)
(4.14)

satisfies the ‘Schrödinger lookalike’ equation

iδ∂Z |ψ〉 = −1

2

(
Z X

X −Z

)
|ψ〉 , (4.15)

and in which we have written δ = εV. It is easy to confirm that normalization of 〈ψ | ψ〉 = 1
implies the normalization (4.3).

Equation (4.15) is formally identical with the Landau–Majorana–Zener model [22–24]
for a quantum spin 1/2 slaved to a changing magnetic field, in which the coordinate Z is
replaced by time. An exact normalized solution, in terms of parabolic cylinder functions [28],
is

(
u(X,Z, δ)

v(X,Z, δ)

)
= exp

(
−πX2

16δ

)⎛⎜⎝X

√
i

4δ
D− iX2

4δ
−1

(
Z√
δ

exp
(− 3

4 iπ
))

D− iX2
4δ

(
Z√
δ

exp
(− 3

4 iπ
))

⎞
⎟⎠ . (4.16)

This satisfies the boundary condition, as can be seen from(
u (0, Z, δ)

v (0, Z, δ)

)
=
(

0

D0

(
Z√
δ

exp
(− 3

4 iπ
))
)

=
(

0

exp
(
−iZ2

4δ

))
, (4.17)

which using (4.12) reproduces (4.4) with S = −1 (one way to get S = +1 would be to replace
(4.5) by R = YeY + ZeZ).
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Figure 2. Transverse linearized slow manifold (spin vector field) {SX, SZ}, for δ = 0.5, computed
from (4.12) and (4.16), and associated streamlines; (b) is a magnification of (a).

It is easy to compute the spin field (linearized slow manifold) (4.12) corresponding to
(4.16). Figure 2 shows the transverse spin field {SX, SZ} in the XZ plane. On the line
X = 0, we see that S({0, 0, Z}, VeZ) = −eZ, as required by the boundary condition. Far
from the origin (e.g. along the line X = 2 in figure 2(a)), we see S({X, 0, Z}, VeZ) →
+eR, so the spin points radially, according to the leading-order adiabatic reaction force S0

(equation 4.8).
Also evident from figure 2 are isolated points for small X and positive Z at which the

transverse field vanishes. These are singularities of the transverse field, corresponding to the
out-of-plane spin SY being ±1. They result from the conflict that occurs for Z > 0, between
S on the boundary X = 0, which points along −eZ, and the adiabatic S far from the origin,
where SZ > 0. Since

SZ + iSX = |u|2 − |v|2 + 2i Re u ∗ v = (u + iv)(u ∗ + iv ∗), (4.18)
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1.0

Z
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Z

S
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S
X

Figure 3. Full curves: components of exact linearized spin field, calculated from (4.12) and (4.16)
for δ = 0.2 and X = 1. Dotted curves: leading order adiabatic approximation decorated with
leading-order exponentially small oscillations, calculated from (4.19).

there are singularities where either factor vanishes. At the singularities, SX and SZ vanish
linearly, controlled by equations (4.6); but these do not restrict their form. In particular, the
transverse field is not divergenceless, so the streamlines can spiral in or out of the singularity,
which can therefore be of ‘focus’ as well as saddle type, as seen in figure 2, where the nonzero
divergence is indicated by the fact that the streamlines have ends.

Now we investigate analytically whether the exact linear slow manifold encompasses not
only the boundary condition (4.1) at X = 0 but also the leading-order adiabatic spin (4.8) for
large R (or small δ), which must be decorated with small oscillations that will eventually grow
and generate the singularities for small X. This requires asymptotics of the parabolic cylinder
functions for large order and large argument simultaneously, namely the Darwin expansions
[29]. These are awkward to implement, and it is easier to proceed ab initio as explained in
appendix D. To leading orders in the δ-independent and exponentially small terms, the result
is

SX(X,Z, δ) ≈ X

R
+ 2�(Z)

Z

R
exp

(
−πX2

4δ

)
cos 	

SY (X,Z, δ) ≈ −2�(Z) exp

(
−πX2

4δ

)
sin 	

SZ(X,Z, δ) ≈ Z

R
− 2�(Z)

X

R
exp

(
−πX2

4δ

)
cos 	,

(4.19)

where �(Z) denotes the unit step and

	 = 1

δ

(
1

4
X2 log

(
R + Z

R − Z

)
+

1

2
RZ

)
. (4.20)

This is correctly normalized up to second order in the small exponential. The leading terms
in SX and SZ give the simplest adiabatic slow manifold S0 = eR. The corrections give the
exponentially small oscillations. Figure 3 shows that this is an excellent approximation.
There are slight deviations, especially for SY near Z = 0, but this is the Stokes line where the
small exponential appears discontinuously in this approximation; the discrepancy could be
corrected by including more terms of the asymptotic series and smoothing the discontinuity
by the universal error function [30–32], but we do not pursue this refinement here.

10
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Equation (4.19) is not the only solution of the Schrödinger lookalike equation (4.15).
From any solution S, the solution −S is obviously also a solution, because of the linearity of
(4.2); it is generated by the transformation(

u(X, 0, Z, δ)

v(X, 0, Z, δ)

)
⇒

(
v ∗(X, 0, Z, δ)

−u ∗(X, 0, Z, δ)

)
, (4.21)

which also satisfies (4.15). The alternative transformation(
u(X, 0, Z, δ)

v(X, 0, Z, δ)

)
⇒

(
v ∗(X, 0,−Z, δ)

u ∗(X, 0,−Z, δ)

)
, (4.22)

also satisfies (4.15) and generates the following spin field, symmetry-related to that illustrated
in figure 2:

S(X, 0, Z, δ) ⇒ {SX(X, 0,−Z, δ), SY (X, 0,−Z, δ),−Sz(X, 0,−Z, δ)}. (4.23)

In the linearization discussed in this section, no use has been made of the solutions (3.5) of the
exact equations, involving the constant J, because these are not solutions of the approximate
equations (4.1).

5. Numerical illustrations of precession suppression

We expect that the spin precession, and the oscillations that it causes in the force on the slow
particle, will be increasingly suppressed as more adiabatic reaction forces are included in the
slow manifold series. To study this, we compute numerical solutions of the slow dynamics
equation (2.6), with the constant of motion J fixed by initial conditions corresponding to the
Nth-order slow manifold for the initial slow variables R0, V 0. We define

Sslow,N (R,V ) ≡
∑N

n=0 εnSn(R,V )∣∣∑N
n=0 εnSn(R,V )

∣∣ . (5.1)

(Without the denominator to enforce normalization, we would have |Sslow,N| = 1 + O(εN+1).)
Then the constant of motion is

JN(R0,V 0) = R0 × V 0 + Sslow,N (R0,V 0). (5.2)

We denote the corresponding slow trajectories – exact solutions of (2.6) – by

RN(t;R0,V 0),V N(t;R0,V 0). (5.3)

To gauge the effectiveness of the slow manifold, we compare two reaction forces. The
first is the force along the exact trajectory at time t:

F N(t;R0,V 0) = V̇ N(t;R0,V 0). (5.4)

The second is the force corresponding to the slow manifold at the particle’s position and
velocity at time t:

F slow,N (t;R0,V 0) = −Sslow,N (RN(t;R0,V 0),V N(t;R0,V 0)). (5.5)

The difference between FN and Fslow,N is a measure of how closely the particle clings to the
Nth order slow manifold. Exploiting rotational symmetry, we can without loss of generality
choose

R0 = {0, 0, R0}, V 0 = {V⊥0, 0, V‖0}. (5.6)

For each choice of R0, V⊥0, V‖0 and the order N, there are two cases, corresponding
to S = ±1.

11
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Figure 4. (a) Distance from the origin for ε = 1 and the attractive case S = +1 and initial conditions
R0 = 10, V⊥0 = 3, V‖0 = 0. (b–e): difference vectors 
N (equation (5.7)) between the exact
force and the force on the Nth order slow manifold for (b) N = 0, (c) N = 1, (d) N = 2, (e)
N = 3 (full curves: x components; dotted curves,y components; dashed curves: z components).
Note the very different vertical scales, indicating closer following of the slow manifold as N
increases. Computations were carried out using Runge–Kutta integration of the differential
equations (2.6).

Figures 4 and 5 show the differences

ΔN ≡ F N − F slow,N (5.7)

along two different trajectories, with S = +1 (attractive lowest-order dynamics) and S = −1
(repulsive lowest-order dynamics). In both cases, the accuracy with which the trajectories
follow the slow manifold improves dramatically as N increases. The improvement with N
is faster for the atttactive case (figure 4) than for repulsion (figure 5), probably because R(t)
varies more slowly in the attractive case: between 10.0 and 9.4 between t = 0 and t = 6
compared with between 10 and 20 between t = 0 and t = 3 for repulsion.

The connection between oscillations and the Stokes phenomenon when R · V = 0,
demonstrated for the linearized slow manifold, strongly suggests that as soon as the distance
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Figure 5. As figure 4, for the repulsive case S = −1 and initial conditions R0 = 10,

V⊥0 = 3, V‖0 = 1.

of a trajectory from the origin is a minimum, the spin along the trajectory will begin to
exhibit oscillatory deviations from that on the Nth order slow manifold, because this does not
incorporate the exponentially small fast oscillations that are expected to decorate the exact
slow manifold. Figure 6 indicates that this happens. The particle falls towards the origin until
t = tc ∼ 3.2, and then recedes (figure 6(a)). For t < tc increasing N makes the spin cling closer
to the slow manifold. After tc, the oscillatory deviation from the slow manifold is nearly the
same for N = 2 and N = 3, and moreover does not diminish as R increases (when the naive
asymptotics should improve).

6. High-order reaction forces

Because the recurrence relations (3.10) for the slow manifold coefficients Sn(R, V ) involve
derivatives with respect to R and V , it is to be expected on the basis of Darboux’s principle
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Figure 6. As figure 4, for ε = 1 and the attractive case S = +1 and initial conditions
R0 = 20, V⊥0 = 3, V‖0 = −4, indicating the appearance and persistence of oscillations after
the particle passes closest to the origin.

[33] that the series will diverge factorially. If the signs of the components of Sn in the terms
alternate as n increases (either successively or in a pattern where several positive terms are
followed by several negative ones), the series is Borel-summable and the divergent tail of the
series when truncated at the term Sn can be well approximated by a multiple of Sn+1, giving an
exponentially small termination when n corresponds to the least term of the asymptotic series
(optimal truncation). This procedure fails if the signs are all the same, which occurs on a
hypersurface in the slow phase space {R, V }. Across this ‘Stokes surface’, an exponentially
small contribution appears [33, 34].

In the present problem, it is known from studies of the slaved spin dynamics
(equation (2.4) with prescribed R(t)) that the Stokes phenomenon is associated with minima of
R(t), that is R and V orthogonal. In the coupled problem (hamiltonian (2.1)), we have already
seen this in the linearized slow manifold (section 4): from the exact solution of the Landau–
Majorana–Zener model [22–24], the exponentially small contributions, with associated fast
oscillations (equations (4.19)), appear when X = 0, which indeed corresponds to R ·V = 0.
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But for the nonlinear slow manifold, there is a subtlety, associated with the fact that
R · V = 0 can correspond not only to a minimum of R(t) but also to a maximum, for which
we do not expect a Stokes phenomenon. Physically it is clear why this is so: the adiabatic
approximation fails when R is closest to the origin, not when it is farthest. Mathematically,
oscillations appear when a Stokes line from a complex zero tc, satisfying R(tc) = 0, crosses
the real axis of the complex-time plane; and as elementary examples indicate, such complex
zeros are associated with minima of R(t) but not maxima. Incorporating this insight, in order
to anticipate the behaviour of the signs of the high-order slow manifold cofficients, requires
knowledge of the gross features of the slow dynamics, as given by the Born–Oppenheimer
approximation, which we elucidate now.

From (3.2), the conserved energy in this lowest-order approximation is

E = ε
P 2

2
+

SR

ε
= 1

ε

(
1

2
V 2 + SR

)
. (6.1)

Also conserved is the angular momentum, involving the velocity component perpendicular
to R:

L = RV⊥ = R

√
V 2 − V 2

‖ . (6.2)

We are interested in the case R ·V = 0, that is V‖ = 0. For repulsive Born–Oppenheimer
dynamics, where S < 0, V‖ = 0 always corresponds to minima of R(t) along trajectories, so
we expect a Stokes phenomenon (all terms with the same sign) whenever R ·V = 0. For
attractive Born–Oppenheimer dynamics, where S > 0, R · V = 0 can correspond either to a
maximum R+, where the speed is V+, or a minimum R−, where the speed is V−. To distinguish
these cases, we note that combining (6.1) and (6.2) for V‖ = 0 gives

L2

2R2
+

+ SR+ = L2

2R2−
+ SR−. (6.3)

The minimum of this effective radial potential is given by R3 = L2/S, i.e. V 2/R = S.
Thus maxima R+ correspond to V 2/R < S, and in this case we do not anticipate a Stokes
phenomenon. Minima of R− correspond to V 2/R > S, and we do anticipate a Stokes
phenomenon.

To calculate the high-order spin field coefficients Sn, it is convenient to express them in
component form, in the basis defined by the following unit vectors:

eR ≡ R

R
, e2 ≡ eR × V

|eR × V | = eR × eV√
1 − (eR · eV )2

, e3 ≡ eR × e2. (6.4)

It follows from the determining equations (3.10) and (3.12) that the odd spin coefficients
depend only on eR and e3, and the even coefficients depend only on e2. In a further
simplification, motivated by (2.8), we define the R-scaled speed by

U ≡ V√
R

, (6.5)

from which it can be shown that Sn ∝ R−3n/2. With R thus eliminated, the coefficients depend
only on two variables: U, and

T ≡ eR · eV = cos θ. (6.6)

where θ is the angle between R and V . In terms of the variables U and T, the Stokes
phenomenon, anticipated on the basis of the analysis of the Born–Oppenheimer dynamics, is
expected to occur when T = 0, for all values of U when S = −1, and for U > 1 when S = +1.
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Thus we represent the coefficients in the following convenient form:

S2n(R,V ) = 1

R3n
(αn(U, T )eR + U

√
1 − T 2γn(U, T )e3),

S2n+1(R,V ) = U
√

1 − T 2

R3n+3/2
βn (U, T ) e2.

(6.7)

Derivation of the recurrence relations satisfied by the functions αn(U, T), βn(U, T) and
γ n(U, T) is facilitated by the following formulas, which hold for any unit vector e:

U ·∇Re = U
√

1 − T 2

R
e2 × e,

eR · ∇Ue = e3 ·∇Ue = 0, e2 · ∇Ue = 1

U
√

1 − T 2
eR × e.

(6.8)

The relations are

βn = −αn − 3UT

(
n +

1

2

)
γn − 1

2
U 2T ∂Uγn + U(1 − T 2)∂T γn

−
n−1∑
m=0

βn−m−1βm −
n∑

m=1

(
αn−m

(
T ∂Uγm +

1 − T 2

U
∂T γm

)

− U(1 − T 2)γn−m

(
∂Uγm − T

U
∂T γm

)
− γn−mγm

)
,

γn = 3nUTβn−1 +
1

2
U 2T ∂Uβn−1 − U(1 − T 2)∂T βn−1

+
n−1∑
m=0

(
αn−m−1

(
T ∂Uβm +

1 − T 2

U
∂T βm

)

− U(1 − T 2)γn−m−1

(
∂Uβm − T

U
∂T βm

)
− 2βn−m−1γm

)
,

αn = − 1

2S

[
n−1∑
m=1

(αn−mαm + U 2(1 − T 2)(γn−mγm + βn−m−1βm)) − SU 2(1 − T 2)βn−1)

]
,

(6.9)

with the initial conditions

α0 = S, γ0 = 0. (6.10)

Thus the coefficients enabling the calculation of S0 through S7 are calculated to be

α0 = S, β0 = −S, γ0 = 0

α1 = 1

2
SU 2(T 2 − 1), β1 = 1

2
S(4S + 5U 2(7T 2 − 1)), γ1 = −3SUT

α2 = −1

8
SU 2(T 2 − 1)(16S + 21U 2(5T 2 − 1))

β2 = −1

8
S(256S2 + 32SU 2(161T 2 − 20) + 21U 4(715T 4 − 374T 2 + 19))

γ2 = 3

2
SUT (24S + 35U 2(3T 2 − 1))

α3 = 1

16
SU 2(T 2 − 1)(544S2 + 32SU 2(286T 2 − 43) + 11U 4(2275T 4 − 1274T 2 + 79))
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β3 = 1

16
S(20 224S3 + 864S2U 2(841T 2 − 89) + 96SU 4(47 740T 4 − 22 293T 2 + 998)

+715U 6(11 305T 6 − 10 353T 4 + 2127T 2 − 55))

γ3 = −3

8
SUT (3552S2 + 16SU 2(2137T 2 − 617) + 231U 4(325T 4 − 234T 2 + 29)) (6.11)

The coefficients have the following structure:

αn = S

n∑
l=1

U 2lSn−l

l∑
j=0

an,j,lT
2j ,

βn = S

n∑
l=0

U 2lSn−l

l∑
j=0

bn,j,lT
2j ,

γn = SUT

n−1∑
l=0

U 2lSn−l−1
l∑

j=0

cn,j,lT
2j .

(6.12)

We do not give here the recurrence relations for an, j , l, bn, j , l, and cn, j , l, derived from (6.9);
they are nonlinear, reflecting the nonlinearity of the slow manifold equation (3.4). A general
analytic solution seems difficult.

However, as expected from the linearization of section 4 the equations for the coefficients
of the highest powers of U are linear and can be solved explicitly, starting from the highest
powers of T. These coefficients are

an,n−k,n = coefficient of SU 2nT 2(n−k) in αn,

bn,n−k,n = coefficient of SU 2nT 2(n−k) in βn,

cn+1,n−k,n = coefficient of SU 2n+1T 2(n−k)+1 in γn+1, (0 � k � n)

(6.13)

For the first few k, these coefficients (equivalent to the Darwin expansions of parabolic cylinder
functions [29]) are

an,n,n = −
(

−1

3

)n

22n−1 	
(
3n − 1

2

)
√

π	 (n + 1)
,

bn,n,n = −
(

−1

3

)n

22n+1 	
(
3n + 3

2

)
√

π	 (n + 1)
,

cn+1,n,n = −
(

−1

3

)n

4n+1 	
(
3n + 5

2

)
√

π	 (n + 1)
,

an,n−1,n = −
(

−4

3

)n−1

(4n + 1)
	
(
3n − 3

2

)
5
√

π	 (n)
,

bn,n−1,n =
(

−4

3

)n

(12n − 7)
	
(
3n + 1

2

)
5
√

π	 (n)
,

cn+1,n−1,n =
(

−4

3

)n

(4n + 1)
6	
(
3n + 3

2

)
5
√

π	 (n)
,

an,n−2,n = −
(

−4

3

)n (
336n2 − 160n − 289

) 3	
(
3n − 5

2

)
2800

√
π	 (n − 1)

,
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bn,n−2,n =
(

−4

3

)n (
1008n2 − 2016n + 953

) 	
(
3n − 1

2

)
720

√
π	 (n − 1)

,

cn+1,n−2,n = −
(

−4

3

)n (
336n2 − 160n − 9

) 3	
(
3n + 1

2

)
350

√
π	 (n − 1)

.

(6.14)

As k increases, the calculations get more intricate, and we have not seen a pattern.
We are interested in the large n behaviour. For these coefficients of U2n, Stirling’s formula

(or the asymptotics of the recurrence relations) gives

an,n−k,n → (−1)n+k+1 9n	 (2n + k − 1)

5k+13πk!

bn,n−k,n → (−1)n+k+1 9n3	 (2n + k + 1)

5k+1πk!

cn+1,n−k,n → (−1)n+k+1 9n+1	 (2n + k + 2)

5k+1πk!

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(n → ∞, k fixed) (6.15)

We see the expected factorial divergence. The coefficients diverge factorially, so, for these
large values of U and high powers of T,

|Sn| ∼ Un

R3n/2
n! =

(
V

R2

)n

n!. (6.16)

The signs in the coefficients (6.15) alternate with k as well as n, so if many terms l, j contribute
in the series (6.12) it is not easy to identify the pattern of signs in the sequence of Sn. The
small-k coefficients in (6.15) correspond to the high powers of T as well as U, and if |T | � 1
they would dominate, indicating an alternating-sign series and the expected absence of the
Stokes phenomenon. But T can never exceed unity (cf (6.6)), so the implication of the signs
in (6.15) is obscure.

In fact, the most interesting case is T = 0, i.e. V perpendicular to R, corresponding for
the slaved-spin case and the linearization to the Stokes line, across which an exponentially
small precessing spin component develops. But when T = 0 the contributing coefficients are
k = n in (6.13) (cf (6.12)), and this case is excluded in the asymptotics (6.15). Nevertheless,
these coefficients can be computed from (6.9). It suffices to consider just the coefficients bn,0,n

(the a and c coefficients are similar); they are very accurately fitted by

bn,0,n = C

(
4

π

)2n

	(2n + 1), (6.17)

where C is a constant. Here all the terms have the same sign, so we do expect a Stokes
phenomenon. Standard asymptotics for the summation of the divergent tail of the series of
Sn in (6.7) and (6.12), leads to the associated small exponential exp(−4R2/πεV ), precisely
concordant with that in (4.19) on recalling that δ = εV.

The formulas (6.13)–(6.19) correspond to the highest powers of U contributing to each
of the Sn, and so represent only the linearized slow manifold. However, by computer-algebra
solution of (6.9) it is possible to calculate the coefficients exactly, and identify the signs, for
any values of U, T and S = ±1, up to large values of n.

Our investigations for n < 50 show the following. The magnitudes |Sn| always increase
factorially. The pattern of signs depends on U, T and S. When T �= 0 it is alternating. Sometimes
the alternation is erratic (at least for n < 50) and sometimes it is regular; for example, when
U = 3/2, T = 1/2, S = 1, the signs of βn are - -++- -++- - . . . . Alternating signs indicate a
series that is Borel-summable, and terminating the sum over Sn at the least term, which from
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(6.16) corresponds to n ∼ R2/εV, leaves a remainder given by the first omitted term, times a
constant that depends on the pattern of signs.

When T = 0, we find that for S = −1 all coefficents n have the same sign for all U, and for
S = +1 the coefficients have the same sign when U > 1 but alternate when U < 1, exactly as
anticipated at the beginning of this section from analyzing the Born–Oppenheimer dynamics.
Another approach leading to the same conclusion is analysis of the real zeros wn,m of the real
polynomials

Pn(w, T ) =
n∑

l=0

wl

l∑
j=0

bn,j,lT
2j (6.18)

for different values of T and (large) n. These polynomials determine the coefficients βn

according to (6.12), for S = ± 1, because

βn = Sn+1Pn(SU 2, T ). (6.19)

The wn,m depend on n, so if U is in a region where there are zeros the signs of Pn, and hence
of βn, will alternate. We find that for T �= 0 the wn,m spread along the whole real axis as n
increases. But when T = 0 the wn,m all lie in the interval 0 < w < 1 (there are also complex
zeros, clustering closer to w = 1 as n increases). Since w = SU2, the range of U does not
include these zeros if S = −1, so the coefficient signs do not alternate. But for S = +1 only
the interval 1 < U < ∞ is free of zeros; if 0 < U < 1 there are zeros, and the signs alternate.

7. Concluding remarks

The model (2.1) that we have explored here, of a particle whose spin is coupled to its position,
is a simple yet nontrivial system for which the high-order reaction forces, whose sum would
determine the slow manifold, is studied in detail. It is a simplification of the model of
appendix A which, although itself a simplification of the general case of hamiltonian fast-slow
coupling, generates high-order reactions that soon get intractably complicated. For the spin
model, we calculated high-order reaction forces, in an attempt to find a slow manifold to which
the spin would cling forever, without oscillating.

The series of reaction forces diverges. The divergence is particularly severe when all
terms have the same sign. This happens where the slow vectors R and V are orthogonal
and V2/R > S, corresponding to a minimum of the distance R(t). It represents a Stokes
phenomenon, signalling the appearance of weak fast oscillations in the slow variable, and
precession in the spin—as in the slaved-spin case. General studies [35, 36] have proved the
persistence of nonoscillatory solutions, clinging close to a slow manifold, only up to a finite
time. Consistent with this, our numerical solutions of the trajectory equations show the spin
clinging closer to the higher-order slow manifolds (figures 4 and 5), but eventually oscillating
around it, with the oscillations beginning when R(t) is stationary (figure 6). Oscillations
seem unavoidable. (There exist families of nonoscillatory driving histories R(t) for which
the spin does not precess [37], but these do not seem relevant to the slow manifold associated
with (2.1).)

Interpreting the divergence in terms of the Stokes phenomenon would lead to an exact
solution for the slow manifold in the particle phase space, to which the spin would cling
forever. But because this manifold would contain exponentially weak fast oscillations in the
particle’s phase space, it is, as pointed out in the Introduction, something of a misnomer to
call it ‘slow’.

We have not been able to find, and cannot prove the existence of, exact solutions of the
nonlinear slow manifold equation (3.4) with the asymptotic condition (3.2) and the boundary
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condition (3.6). The only approaches we could implement are the divergent ε-series and
the exact solutions of the linearized slow manifold equation (4.1), both of which support the
statements in the preceding paragraphs.
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Appendix A. First-order reaction force (geometric magnetism) in a generalized model

In this generalization of (2.1), the fast system has (possibly multidimensional) phase-space
variables x = {q, p}, and is incorporated into the hamiltonian by a potential �, according to

H = 1

2
εP · P +

1

ε
� (R,x) . (A.1)

The slow velocity is

V ≡ Ṙ = εP , (A.2)

and the corresponding force is

F (R,x) ≡ R̈ = V̇ = εṖ = −∇R�(R,x). (A.3)

The fast dynamics is

ẋ = 1

ε
J∇x�(R, x) ≡ 1

ε
v(R,x), (A.4)

involving the symplectic matrix, with elements corresponding to q and p,

J =
{

0 1
−1 0

}
. (A.5)

Assume now that if the slow variables are regarded as fixed, the fast dynamics possesses
an equilibrium state, in which r and p do not change. This determines an approximation to
the slow manifold:

v(R,x0) = 0 ⇒ x = x0(R), (A.6)

and the corresponding ‘Born–Oppenheimer’ force on the slow dynamics:

F 0(R) = F(R,x0(R)). (A.7)

If a corresponding exact slow manifold exists when the slow velocity V �= 0, it must be
a function on the slow phase space, denoted

x = xc(R,V ). (A.8)

The equation that xc must satisfy is determined by the fast velocity on it:

ẋc = Ṙ · ∇Rxc + V̇ · ∇V xc = V · ∇Rxc + F(R,xc) · ∇V xc. (A.9)

After incorporating the fast dynamics (A.4), we get the slow manifold equation
1

ε
v (R,xc) = V · ∇Rxc + F(R,xc) ·∇V xc. (A.10)

This is the generalization of (3.4) determining the slow manifold in the spin model. The
solution, if it exists, determines the force on the slow particle according to

F (R,V ) = F(R,xc(R,V )). (A.11)

20



J. Phys. A: Math. Theor. 43 (2010) 045102 M V Berry and P Shukla

We seek the slow manifold as an adiabatic series:

xc(R,V ) = x0(R) +
∞∑

n=1

εnxn(R,V ). (A.12)

To find the first correction, we substitute into (A.10), extract the terms independent of ε, and
note that x0 is independent of V , leading to

x1(R,V ) · ∇xv (R,x0) = V ·∇Rx0(R). (A.13)

Writing this in component form

Mijx1j = bi, (A.14)

where the indices i, j label fast phase-space variables and

bi = (b)i = V · ∇Rx0i (R), Mij = (M)ij = ∂xj
vi, (A.15)

gives the solution

x1 = M−1b. (A.16)

The corresponding first-order reaction force, correcting (A.7), is

F 1(R,V ) = x1(R,V ) · ∇xF(R,x0(R)). (A.17)

To evaluate this, we invoke Hamilton’s equations (A.4) and write

∇xF(R,x) = −∇x∇R�(R,x) = −∇R∇x�(R,x)

= ∇RJv(R,x) = J∇Rv(R,x), (A.18)

Thus, using (A.14)–(A.16),

F 1(R,V ) = M−1V ·∇Rx0(R) · J∇Rv(R,x0(R)). (A.19)

Next, we simplify the last factor by noting that, from the definition (A.6) of x0, the zero-order
fast velocity vanishes for all R, so its total derivative must also vanish for all R:

0 = ∇Rv (R,x0(R)) + ∇Rx0(R) · ∇xv (R,x0(R))

= ∇Rv (R,x0(R)) + M∇Rx0(R), (A.20)

where M is defined in (A.15). Thus

F 1(R,V ) = −M−1V · ∇Rx0(R) · JM∇Rx0(R), (A.21)

where the first dot acts between the vectors in the slow (R, V , F) space, and the second dot
acts between vectors in fast (x) phase space.

Remarkably, the factors M cancel, even though the vectors and matrices do not commute.
To see this, it suffices to write the formulas for one-dimensional fast motion, that is

x =
(

q

p

)
, J =

(
0 1

−1 0

)
,

M =
(

∂rvr ∂pvr

∂rvp ∂pvp

)
=
(

�rp �pp

−�rr −�rp

)
,

(A.22)

where subscripts denote derivatives. Thus, not writing variables explicitly for the moment, we
get from (A.12)

F 1 = − 1

�rr�pp − �2
rp

[(−�rp −�pp

�rr �rp

)(
V · ∇Rq0

V · ∇Rp0

)]T

×
(

0 1
−1 0

)(
�rp �pp

−�rr −�rp

) (∇Rq0

∇Rp0

)
. (A.23)
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θ
I

ψ

J

S

R

Figure B1. Hamiltonian variables for spin model.

Explicit evaluation of the matrix and vector products gives

F 1 = −V · ∇Rq0∇Rp0 + V ·∇Rp0∇Rq0 = V × (∇Rq0 × ∇Rp0) . (A.24)

Thus the first-order reaction can be written as a ‘magnetic’ force,

F 1(R,V ) = V × Bg(R), (A.25)

where Bg is the geometric magnetic field (phase 2-form) that generates the Hannay
angle [8, 38]:

Bg(R) = ∇Rq0(R) × ·∇Rp0(R). (A.26)

Here the × acts between slow gradients ∇R and the · acts between fast variables q0 and p0. For
more general motions, not restricted to the slow manifold, the fast system must be integrable
and the 2-form must be averaged over a phase-space torus [38]; but for the special clinging
motions we consider here the torus has shrunk to a point, so averaging is unnecessary; indeed
the motion could be nonintegrable, so there need not be any tori—the only requirement is an
equlibrium state x0.

Appendix B. Hamiltonian form for reduced dynamics (after Littlejohn and Weigert
[12])

Equation (2.6) incorporates the constancy of J but is not obviously hamiltonian. To get the
dynamics in hamiltonian form, we refer to figure B1 and express (2.1) in the variables

R = |R|, I = S · eR, ψ. (B.1)

Here I is the adiabatic invariant for slowly-varying R, and ψ is the (fast) azimuth angle of S
relative to R. that is

S = IeR +
√

S2 − I 2(cos ψ eθ + sin ψ eφ), (B.2)

in which eθ and eφ are the unit polar vectors of the particle position R, relative to J which we
choose along the z axis, i.e. J = Jez.

Next, we separate the radial and angular parts of the kinetic energy:

P ·P = P 2
R +

|R × P |2
R2

= P 2
R +

|J − S|2
R2

(B.3)
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Now

|J − S|2 = J 2 + S2 − 2J ·S, (B.4)

and

J ·S = JS · ez = J (IeR · ez +
√

S2 − I 2 cos ψ eθ ·ez)

= J (I cos θ −
√

S2 − I 2 cos ψ sin θ)

= I 2 −
√

(S2 − I 2)(J 2 − I 2) cos ψ. (B.5)

In the last line we have used the result, from (2.5),

J ·eR = S · eR, i.e.J cos θ = I. (B.6)

Putting everything together, (3.1) becomes

H = 1

2
εP 2

R + ε

(
J 2 + S2 − 2I 2 + 2

√
(S2 − I 2)(J 2 − I 2) cos ψ

)
2R2

+
IR

ε
. (B.7)

This is the hamiltonian in the canonical variables {R, PR}, {ψ , I}, i.e. two freedoms). J and S
are constants. For the evolution of the canonical variables, Hamilton’s equations give,

Ṙ = εPR,

R̈ = εṖR = −I + ε2

(
J 2 + S2 − 2I 2 + 2

√
(S2 − I 2)(J 2 − I 2) cos ψ

)
R3

,
(B.8)

and

ψ̇ = 1

ε
R − ε

2I

R2
− ε

I (S2 + J 2 − 2I 2) cos ψ√
(S2 − I 2)(J 2 − I 2) R2

İ = ε

√
(S2 − I 2)(J 2 − I 2) sin ψ

R2
.

(B.9)

(The apparent freezing if I starts from the initial value S is illusory, because I = S is a coordinate
singularity, easily regularised by considering the dynamics of the angle μ between S and R,
defined by I = S cos μ.)

From the solutions, we can determine the remaining unknowns, namely the evolution of
the angular variables θ and φ of the particle position R. θ is given by (B.6), i.e.

cos θ = I

J
, i.e. θ̇ = − İ

J sin θ
= −

√
S2 − I 2

R2
sin ψ. (B.10)

For φ we use

J · eθ = −J sin θ = R × V · eθ + S · eθ = −R2φ̇ sin θ +
√

S2 − I 2 cos ψ, (B.11)

so

φ̇ = J

R2

⎛
⎝1 +

√
S2 − I 2

J 2 − I 2
cos ψ

⎞
⎠ . (B.12)
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These hamiltonian evolution equations can be alternatively (and more laboriously) derived by
direct transformation of the evolution equations (2.3) and (2.4).

Appendix C. S2 is the Littlejohn–Weigert (LW) force

Adapted to our notation (including signs and ε scaling), the ‘new term’ identified in equation
(54) of [12] is the term involving ε3 in the LW slow hamiltonian

H = 1

2
εP 2 +

S

ε
R +

ε3S

2R
(P · ∇ReR)2

= 1

2
εP 2 +

S

ε
R +

ε3S

2R3
(P 2 − (P · eR)2), (C.1)

where we have used

(P · ∇ReR)2 = P 2 − (P ·eR)2

R2
= P 2

⊥
R2

. (C.2)

We have ignored the vector potential representing geometric magnetism, because this does not
contribute to the lowest-order LW force that we are interested in here, and we have ignored
the electric scalar potential because it vanishes for the case considered here, in which S and
R are parallel.

To lowest orders in ε, the first Hamilton equation gives

V = εP +
ε3S

R3
P ⊥ = εP +

ε2S

R3
V ⊥. (C.3)

The second Hamilton equation gives, also to lowest orders,

Ṗ = −S

ε
eR +

3εS

2R4
V 2eR − 5εS

2R4
V 2

‖ eR +
εS

R4
V‖V , (C.4)

Differentiating (C.3) gives

V̇ = εṖ − 3ε2S

R4
V‖V ⊥ +

ε2S

R3
V̇ ⊥. (C.5)

Now

V̇ ⊥ = d

dt
(V − V ·eReR) = V̇ − V̇ · eReR − V · ėReR − V · eRėR

= −SeR + SeR − V 2
⊥

R
eR − V‖

R
V ⊥ = −V 2

⊥
R

eR − V‖
R

V ⊥, (C.6)

where we have used ėR = V ⊥/R.
Combining (C.4–6) leads to

V̇ = −SeR +
ε2S

R4

(
1

2
V 2

⊥eR − 3V‖V ⊥

)
, (C.7)

involving exactly the second-order force −ε2S2 in (3.13) derived from the general formalism.

Appendix D. Parabolic cylinder asymptotics

We will use the saddle-point method, starting from the definition (formula 9.241.1 of [28])

Dp(u) =
√

2

π
2p exp

(
−1

2
ipπ +

1

4
u2

)∫ ∞

−∞
dt tp exp(−2t2 + 2itu) [Re p > −1] (D.1)
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This can be used for v in (4.16), in which p = −iX2/4d. The formula is not valid for u, for
which we will use the identity

Dp−1(u) = 1

2p
uDp(u) +

1

p
∂uDp(u). (D.2)

It is convenient to write the integral in the form∫ ∞

−∞
dt exp {−�(t;X,Z, δ)}, (D.3)

where

�(t;X,Z, δ) = i
X2

4δ
log t + 2t2 + 2i

Xt

δ
exp

(
3

4
iπ

)
. (D.4)

A short calculation gives the two saddles as

∂t�(t±) = 0 ⇒ t± = Z ± R

4δ
exp

(
−1

4
iπ

)
. (D.5)

We also need the second derivative

∂2
t �(t±) = 8

X2
R (R ∓ Z) , (D.6)

and, most important, the exponents themselves:

�(t±) = πX2

16δ
+

i

δ

[
1

4
X2 log

(
Z ± R

4
√

δ

)
± 1

4
RZ +

1

8

(
3Z2 − R2)] . (D.7)

We need to know which of the two saddles t± contribute to the integral, in the sense that
the integration path in (D.3) can be deformed from the real axis through t±, and also which
is dominant, in the sense of having the smaller value of Re�. Careful analysis (not given
here) of the steepest-descent paths (level curves of Im� in the t plane) shows that only t−
contributes if Z < 0, and both of t± contribute if Z > 0. For the dominance, we note that in
(D.7) the argument of the logarithm is positive for t+, and negative for t− (for both signs of Z).
The negative sign contributes an additional term to �(t−), so

Re �(t+) = πX2

16δ
, Re �(t−) = πX2

16δ
− πX2

4δ
, (D.8)

showing that the dominant saddle is always t−.
Now we have all the ingredients for calculating v in (4.16). There is part of the phase that

is common to u and v and to t± and therefore does not contribute to S in (4.12). This does not
need to be written explicitly, and we denote it by μ. The difference of phase is important for
Z > 0, when both saddles contribute, and for this we write

	 = Im[�(t+) − �(t−)] = 1

δ

(
1

4
X2 log

(
R + Z

R − Z

)
+

1

2
RZ

)
. (D.9)

Thus we obtain the asymptotic result

v(X,Z, δ) ≈ exp(iμ)X

2R

(
1√

R + Z
+

�(Z)√
R − Z

exp

(
−πX2

4δ

)
exp(−i	)

)
, (D.10)

in which the unit step � multiplies the contribution from t−, which exists only for Z > 0. For
the calculation of u from (4.16), we use (D.1) and (D.2), realising that in the resulting integral
the new factors t are slowly varying and can be replaced by their values at each contributing
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saddle. This leads to

u(X,Z, δ) ≈ exp(iμ)X

2R

(√
R + Z − �(Z) exp

(
−πX2

4δ

)√
R − Z exp(−i	)

)
. (D.11)

The approximate linearized slow manifold (4.19) follows after substituting (D.10) and (D.11)
into (4.12).
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